Cloud Computing is very popular today because of large amount of data storage and fast access of data over the network. But in today’ s scenario we find the some issue to access and store data in cloud likewise data theft, data loss, privacy issue, infected application, data location, security on vendor level, security at user level and data duplication. As we find of recent study 7 Zeta Byte (ZB) data available in different storage location after 5 years it will increases the 5 times more data storage. For the better performance of system we use the different data deduplication method liked selective performance oriented data deduplication. In this paper we propose to remove data redundancy from available offline or online data storage as well as we provide security of data which helps to improve the performance of system. After deleting the data from file automatically size of file reduces and which helps to reduce the traffic on the network.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Improving the Performance of System in Cloud by Using Selective Deduplication


    Beteiligte:


    Erscheinungsdatum :

    01.03.2018


    Format / Umfang :

    1706449 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    A Dynamic Deduplication Method with Application-Aware in Cloud Environment

    He, Qinlu / Bian, Genqing / Shao, Bilin et al. | British Library Online Contents | 2018


    Deduplication of Textual Data by NLP Approaches

    Ghassabi, Kiana / Pahlevani, Peyman / Lucani, Daniel E. | IEEE | 2023


    IMPROVING LIDAR POINT CLOUD SEGMENTATION USING BOX PREDICTION

    ZHOU LUBING / MENG XIAOLI / SHETTI KARAN RAJENDRA | Europäisches Patentamt | 2022

    Freier Zugriff

    Influence of Expected Chunk Size on Deduplication Ratio in Content Defined Chunking Algorithm

    Wang, Longxiang / Dong, Xiaoshe / Zhang, Xingjun et al. | British Library Online Contents | 2016