NASA and the international community are investing in the development of a commercial transportation infrastructure that includes the increased use of rotorcraft, specifically helicopters and civil tilt rotors. However, there is significant concern over the impact of noise on the communities surrounding the transportation facilities. One way to address the rotorcraft noise problem is by exploiting powerful search techniques coming from artificial intelligence coupled with simulation and field tests to design low-noise flight profiles which can be tested in simulation or through field tests. This paper investigates the use of simulation based on predictive physical models to facilitate the search for low-noise trajectories using a class of automated search algorithms called local search. A novel feature of this approach is the ability to incorporate constraints directly into the problem formulation that addresses passenger safety and comfort.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Simulation to support local search in trajectory optimization planning


    Beteiligte:


    Erscheinungsdatum :

    01.03.2012


    Format / Umfang :

    672153 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Simulation to Support Local Search in Trajectory Optimization Planning

    Morris, Robert A. / Venable, K. Brent / Lindsey, James | NTRS | 2012


    TRAJECTORY PLANNING BASED ON TREE SEARCH EXPANSION

    CALDWELL TIMOTHY / HUANG XIANAN / MEHDI SYED BILAL et al. | Europäisches Patentamt | 2025

    Freier Zugriff


    TRAJECTORY PLANNING BASED ON TREE SEARCH EXPANSION

    CALDWELL TIMOTHY / HUANG XIANAN / MEHDI SYED BILAL et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Local Trajectory Planning for Autonomous Driving

    Boroujeni, Zahra | DataCite | 2020