This paper describes analytic and semianalytic methods for predicting performance of track-to-track association, in terms of correct association probability, by an optimal assignment algorithm. The focus of this paper is to quantify how much feature or attribute information may improve association performance over the standard kinematic-only track-to-track association. Our goal is to obtain an analytical formula to predict the association performance as a function of a set of key parameters that quantify the quality of feature information. The result extends our previous development of an exponential law for predicting association performance, by including the effects of the additional generally non-Gaussian feature or attribute information.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Performance prediction of feature-aided track-to-track association


    Beteiligte:
    Mori, Shozo (Autor:in) / Kuo-Chu Chang (Autor:in) / Chee-Yee Chong (Autor:in)


    Erscheinungsdatum :

    01.10.2014


    Format / Umfang :

    1054530 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    TRACK PREDICTION DEVICE AND TRACK PREDICTION METHOD

    SASAKI TOMOYUKI | Europäisches Patentamt | 2022

    Freier Zugriff

    TRACK PREDICTION APPARATUS AND TRACK PREDICTION METHOD

    SASAKI TOMOYUKI | Europäisches Patentamt | 2020

    Freier Zugriff

    Improving track continuity using track segment association

    Yeom, S.-W. / Kirubarajan, T. / Bar-Shalom, Y. | IEEE | 2003


    HTG-TA: Heterogenous Track Graph for Asynchronous Track-to-Track Association

    Xiong, Wei / Xu, Pingliang / Cui, Yaqi | IEEE | 2024


    TRACK PREDICTION DEVICE, TRACK PREDICTION METHOD, AND PROGRAM

    HANDA YASUSHI / YOSHIDA TARO / FUJITA HIROTAKA | Europäisches Patentamt | 2022

    Freier Zugriff