Effective implementation of low probability of intercept (LPI) techniques is crucial for enhancing the survivability of radar systems in electronic warfare scenarios. This article explores the use of reinforcement learning in dynamically generating LPI signals in unknown adversarial environments encountered by electronic intelligence (ELINT) systems. We develop a Markov decision model to guide the LPI radar in mitigating power-based interceptions by jointly optimizing transmit signal power and modulation strategies. The interception efficacy of ELINT and the radar's normalized instantaneous transmit power are integrated to comprehensively evaluate LPI performance and radar detection capabilities. A tunable weighting factor facilitates adaptable adjustments between these objectives during decision making. We validate the efficacy of the proposed approach by numerical simulations. Assessment of LPI efficacy is conducted through the analysis of time–frequency modulation signals observed by ELINT, while detection performance is evaluated through synthetic aperture radar imaging tasks.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Reinforcement-Learning-Enhanced Adaption of Signal Power and Modulation for LPI Radar System


    Beteiligte:
    Yuan, Ye (Autor:in) / Liu, Xinyu (Autor:in) / Zhang, Tianxian (Autor:in) / Cui, Guolong (Autor:in) / Kong, Lingjiang (Autor:in)


    Erscheinungsdatum :

    01.12.2024


    Format / Umfang :

    4204597 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Deep Reinforcement Learning-based Joint Frame Length and Rate Adaption for WLAN Network

    Zhou, Lihong / Fang, Xuming / He, Rong et al. | IEEE | 2023


    Intake adaption system

    BANKS III GALE C | Europäisches Patentamt | 2021

    Freier Zugriff


    Pollution Practical Research of Adaption Cruise Control System Radar During Winter Usage Condition

    Ivanov, A. M. / Andreev, A. N. / Dyakov, Ph. K. et al. | IEEE | 2022


    METHOD FOR RESTRAINT DEPLOYMENT ADAPTION AND SYSTEM FOR RESTRAINT DEPLOYMENT ADAPTION

    VERMEULIN FRANCOIS-XAVIER / ROCCHISANI CLAIRE / DEVAVRY ARNAUD et al. | Europäisches Patentamt | 2024

    Freier Zugriff