Combining the multiscale capability from wavelet with the performance of real-time and recursion about Kalman filter, a multiscale sequential filter is proposed to process dynamic systems with multisensor. This filter can not only absolutely achieve the effect obtained via conventional multisensor fusion approach, but also it has the advantages as wavelet and Kalman filter. Its multiscale characteristic can be used to analyze stochastic signal in different frequency subspace. Some similar methods existed do not possess these capabilities, such as real time and recursion. Computer simulation also shows that all estimate results from the new algorithm is comparable with that from traditional date fusion algorithms. Finally, the computable advantage is likewise validated by comparing the computer burden between the new algorithm and other two existed fusion algorithms.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The multiscale sequential filter with multisensor data fusion


    Beteiligte:
    Chenglin Wen, (Autor:in) / Chuanbo Wen, (Autor:in)


    Erscheinungsdatum :

    01.01.2006


    Format / Umfang :

    1418947 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multisensor data fusion

    Varshney, P.K. | Tema Archiv | 1997


    Multisensor data fusion

    Waltz, E. / Llinas, J. | Tema Archiv | 1990


    Multisensor Suboptimal Fusion Student's $t$ Filter

    Li, Tiancheng / Hu, Zheng / Liu, Zhunga et al. | IEEE | 2023


    Asynchronous Multisensor Data Fusion

    Wang, J. / Han, C.-z. / Li, X.-r. | British Library Online Contents | 2001


    Distributed multisensor data fusion

    NASBURG, R. / MORAVEC, K. | AIAA | 1984