In addressing the complex challenge of Traffic Signal Control (TSC), Deep Reinforcement Learning (DRL) has emerged as a popular solution. In traditional DRL methods applied to TSC problems, deep neural networks are sensitive to minor input changes, which complicates accurate predictions. This ambiguity hampers algorithm convergence, speed, and overall performance. Additionally, existing DRL methods for TSC employ high-dimensional state spaces, escalating computational complexity. This study addresses these challenges by introducing an innovative approach, SLFMLight, that integrates a stochastic traffic flow model with DRL algorithm for TSC. Our method employs an innovative network update algorithm that integrates traffic flow prediction in Q-value learning process to enhance interpretability and accelerate algorithm convergence. Utilizing mode-based multi-actor networks to handle diverse traffic conditions, SLFMLight excels in decision-making towards complex traffic scenarios, especially in congested ones. Concise state definition improves computational efficiency. SLFMLight contributes to the advancement of intelligent traffic management by providing an effective DRL solution that improves interpretability, efficiency, and adaptability in TSC.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Stochastic Traffic Flow Model-Based Reinforcement Learning Framework For Advanced Traffic Signal Control


    Beteiligte:
    Zhu, Yifan (Autor:in) / Lv, Yisheng (Autor:in) / Lin, Shu (Autor:in) / Xu, Jungang (Autor:in)


    Erscheinungsdatum :

    01.01.2025


    Format / Umfang :

    1906480 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Reinforcement learning-based traffic signal control

    Sheng, Liu Tian / Azman, Afizan Bin / Khan, Navid Ali et al. | IEEE | 2024


    Adaptive traffic signal control method combining traffic flow prediction and reinforcement learning

    PI JIATIAN / YANG XINMIN / WU CHANGZHI | Europäisches Patentamt | 2023

    Freier Zugriff

    Deep Reinforcement Learning-based Traffic Signal Control

    Ruan, Junyun / Tang, Jinzhuo / Gao, Ge et al. | IEEE | 2023


    Traffic signal control method based on reinforcement learning

    LONG SHUI / YU JIADI | Europäisches Patentamt | 2023

    Freier Zugriff

    Traffic signal control method based on reinforcement learning of maximum entropy framework

    KAN YUHENG / WANG MAONAN / GU XINYANG | Europäisches Patentamt | 2023

    Freier Zugriff