As the key subsystem of rail transit vehicles, the reliability of train door subsystem directly affects the safety of vehicles' operation. Therefore, it is very necessary to obtain the operation state of train door in advance. The train door is a complex system that drives the movement of the train door leaf through the rotation of the motor driven screw rod. It is difficult to diagnose and predict its fault by establishing a mathematical model directly. It is also very difficult to collect a large number of sample data with fault labels for machine learning. Therefore, the expert system combined with domain expert knowledge is a better choice for train door fault diagnosis. By using mathematical expression as the rule of train door fault diagnosis expert system, this paper makes train door fault diagnosis more flexible, more scalable and easier to popularize.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Application of Mathematical Expression Rules in Train Door Fault Diagnosis Expert System


    Beteiligte:
    Shen, Liqin (Autor:in) / Zhang, Mengmeng (Autor:in) / Wang, Wentao (Autor:in)


    Erscheinungsdatum :

    01.11.2021


    Format / Umfang :

    898464 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Industrial fault diagnosis: Pneumatic train door case study

    Lehrasab, N. / Dassanayake, H.P.B. / Roberts, C. et al. | Tema Archiv | 2002



    Industrial fault diagnosis: pneumatic train door case study

    Lehrasab, N. / Dassanayake, H. P. B. / Roberts, C. et al. | British Library Online Contents | 2002


    Industrial fault diagnosis: Pneumatic train door case study

    Lehrasab, N / Dassanayake, H. P. B. / Roberts, C et al. | SAGE Publications | 2002


    Network Fault Diagnosis Expert System Based on Extended Production Rules

    Peiqi, L. / Zengzhi, L. / Yinliang, Z. | British Library Online Contents | 2004