Cyber-physical systems (CPSs) are on the rise for safety-critical applications. While formal verification approaches may work on simple systems, these approaches need more scalability. When systems are sufficiently complex, testing is often the only practical way to gain confidence the system works as expected. How can we generate high-quality tests for CPS? This work proposes an approach to improve test case generation for CPSs. We achieve this by proposing a new model-based seed generation algorithm in the fuzz testing pipeline. We first use the Koopman operator technique to construct a predictor model to capture the effect of time-varying inputs on the CPS behavior. Then, we use the model in a Model Predictive Control (MPC) optimization loop, generating control inputs that drive the system through state space. We evaluate the strategy's effectiveness through extensive experiments on the well-known neural network air-to-air collision avoidance benchmark, ACAS Xu. Evaluation results prove that the proposed Koopman MPC approach achieves better test coverage than other fuzz testing and falsification tools.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Testing Autonomous Cyber-Physical Systems with Koopman Surrogate Model Predictive Control


    Beteiligte:


    Erscheinungsdatum :

    15.07.2024


    Format / Umfang :

    468224 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Intelligent cyber-physical systems for autonomous transportation

    Garg, Sahil ;Aujla, Gagangeet Singh ;Kaur, Kuljeet | TIBKAT | 2022



    Cyber Space and Aviation 4.0 — New Testing Facilities for Next Generation of Cyber-Physical, Autonomous and Air Traffic Control Systems

    Nawrocki, Miroslaw / Kurowski, Krzysztof / Gorzenski, Radoslaw | British Library Conference Proceedings | 2021



    Exploring Koopman Operator Based Surrogate Models—Accelerating the Analysis of Critical Pedestrian Densities

    Lehmberg, Daniel / Dietrich, Felix / Kevrekidis, Ioannis G. et al. | TIBKAT | 2020