Synthetic Aperture Radar (SAR) imaging systems have the ability to acquire images of the terrain surface in all weather conditions and all day times. Digital Elevation Model (DEM) can be generated from two or more SAR images, and is considered essential in various recent applications. Acquired SAR images are often exposed to speckle noise, which has a negatively bad effect on the processing and interpretation of the SAR images, and hence on the DEM generation process. In this paper, a Convolution Neural Network (CNN) based preprocessing layer is suggested in the DEM generation process from SAR images. The main purpose of the suggested CNN based preprocessing layer is removing speckle noise from input SAR images, from which an enhanced DEM can be generated. Extensive experiments are carried out on SAR images, and different DEMs are generated from original SAR images and from despeckled ones. Comparative analysis is figured out, and results show significant enhancements in despeckled SAR images and in the subsequent generated DEMs.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Digital Elevation Model Enhancement using CNN-Based Despeckled SAR Images


    Beteiligte:


    Erscheinungsdatum :

    01.03.2020


    Format / Umfang :

    1472164 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Digital Elevation Map Parametric Error Analysis Using Corresponding NAC Images

    Chris R Gnam / Carolina Restrepo / Andrew L Liounis | NTRS


    Integrated Denoised Synthetic Aperture Radar Images for Enhanced Digital Elevation Model Generation

    Mahmoud, Tarek A. / Saied, Shady K. / Elshafey, Mohamed A. | AIAA | 2022



    Digital Elevation Model Mosaic of Mercury

    Cook, A. C. / Watters, T. R. / Robinson, M. S. | NTRS | 2001


    Research on Digital Elevation Model Using GNSS-IR Technology

    Zhou, Xin / Zhang, Shuangcheng / Liu, Qi et al. | British Library Conference Proceedings | 2021