We propose to model the traffic flow in a video using a holistic generative model that does not require segmentation or tracking. In particular, we adopt the dynamic texture model, an auto-regressive stochastic process, which encodes the appearance and the underlying motion separately into two probability distributions. With this representation, retrieval of similar video sequences and classification of traffic congestion can be performed using the Kullback-Leibler divergence and the Martin distance. Experimental results show good retrieval and classification performance, with robustness to environmental conditions such as variable lighting and shadows.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Classification and retrieval of traffic video using auto-regressive stochastic processes


    Beteiligte:
    Chan, A.B. (Autor:in) / Vasconcelos, N. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    1117034 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Classification and Retrieval of Traffic Video Using Auto-Regressive Stochastic Processes

    Chan, A. B. / Vasconcelos, N. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2005



    Practical generation of video textures using the auto-regressive process

    Campbell, N. / Dalton, C. / Gibson, D. et al. | British Library Online Contents | 2004


    Auto-Regressive Model with Exogenous Input (ARX) Based Traffic Flow Prediction

    Ying, Jun / Dong, Xin / Li, Bowei et al. | ASCE | 2021


    Auto-Regressive Model with Exogenous Input (ARX) Based Traffic Flow Prediction

    Ying, Jun / Dong, Xin / Li, Bowei et al. | TIBKAT | 2021