The widespread spread and continuous evolution of malicious files pose a serious threat to the security of computer systems. Therefore, developing efficient and accurate malicious file detection methods has important research value. This paper presents a malicious file detection method based on gray graph features and deep neural network (DNN). First, the file is transformed into an image representation by extracting the grayscale graph features of the file. Then, the pre-trained DNN model is used to learn and classify the gray graph features and determine whether the file is malicious. To verify the effectiveness of this method, we performed an experimental evaluation using high-precision datasets. The experimental results show that the proposed method performs well in malicious file detection, with high accuracy and low false alarm rate. This study provides a new approach to the field of malicious file detection and can be applied in a real network environment.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Malicious file detection method based on deep neural network and gray-scale graph feature fusion


    Beteiligte:
    Wang, Rui (Autor:in) / Li, Haiwei (Autor:in) / Zhao, Jiaxuan (Autor:in) / Xue, Zheng (Autor:in) / Zhang, Lijuan (Autor:in) / Chen, Yanru (Autor:in) / Hao, Yan (Autor:in)


    Erscheinungsdatum :

    11.10.2023


    Format / Umfang :

    2529322 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Research on Malicious TLS Traffic Detection Based on Spatiotemporal Feature Fusion

    Qin, Mingyue / Nian, Mei / Zhang, Jun et al. | Springer Verlag | 2022


    Lane malicious intrusion detection based on recurrent neural network

    Mai, Kaijun / Lu, Xinghua / Pan, Yifu et al. | SPIE | 2022


    Feature Cloning and Feature Fusion Based Transportation Mode Detection Using Convolutional Neural Network

    Alam, Md. Golam Rabiul / Haque, Mahmudul / Hassan, Md. Rafiul et al. | IEEE | 2023


    Intelligent non-pneumatic tire health monitoring method based on multi-feature fusion deep neural network

    DENG YAOJI / LU KEYU / WANG ZHIYUE et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Small-Scale Pedestrian Detection Based on Deep Neural Network

    Han, Bing / Wang, Yunhao / Yang, Zheng et al. | IEEE | 2020