This paper proposes a novel deep learning framework for multi-modal motion prediction. The framework consists of three parts: recurrent neural network to process target agent's motion process, convolutional neural network to process the rasterized environment representation, and distance-based attention mechanism to process the interactions among different agents. We validate the proposed framework on a large-scale real-world driving dataset, Waymo open motion dataset, and compare its performance against other methods on the standard testing benchmark. The qualitative results manifest that the predicted trajectories given by our model are accurate, diverse, and in accordance with the road structure. The quantitative results on the standard benchmark reveal that our model outperforms other baseline methods in terms of prediction accuracy and other evaluation metrics. The proposed framework is the second-place winner of the 2021 Waymo open dataset motion prediction challenge.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    ReCoAt: A Deep Learning-based Framework for Multi-Modal Motion Prediction in Autonomous Driving Application


    Beteiligte:
    Huang, Zhiyu (Autor:in) / Mo, Xiaoyu (Autor:in) / Lv, Chen (Autor:in)


    Erscheinungsdatum :

    08.10.2022


    Format / Umfang :

    647412 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Cure and Recoat Mechanism of 2K Polyurethane Topcoats

    McGinness, J. D. / SAE | British Library Conference Proceedings | 1995


    Cure and Recoat Mechanism of 2K Polyurethane Topcoats

    McGinness, James D. | SAE Technical Papers | 1995


    Cure and recoat mechanism of 2K polyurethane topcoats

    McGinness,J.D. / Red Spot Paint and Varnish,US | Kraftfahrwesen | 1995


    A Generic Framework for Motion Prediction in Autonomous Driving

    Karle, Phillip Jonathan | TIBKAT | 2024

    Freier Zugriff