To develop a cyber-physical artificial intelligence enabled wireless network, it is essential to support unprecedented high throughput and efficient spectrum utilization in a practically unknown channel. In this regard, we need to investigate the design aspects of the network exploiting deep learning-based non-orthogonal multiple access (NOMA) for a model-free environment. In this work, a model-free deep learning algorithm based on deep deterministic policy gradient is proposed that provides a continuous course of actions under the optimal policy for an untrusted NOMA network. Utilizing the concept of physical layer security, we focus on maximizing the sum secrecy rate of the system in terms of decoding order and transmitting power allocation to users under the limited energy constraint at the base station. Via extensive simulations, while training, we measure the performance of the deep learning algorithm in terms of cumulative sum secrecy rate, convergence rate and stability. Also, after the training, we obtain various insights on the performance of the obtained optimal policy by varying the independent system parameters and compare the algorithm against a benchmark that provides the improvement of nearly 55% in the noisy channel.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimal AI-Enabled Secured NOMA Among Untrusted Users


    Beteiligte:
    Thapar, Sapna (Autor:in) / Prasad, Ganesh (Autor:in) / Mishra, Deepak (Autor:in) / Saini, Ravikant (Autor:in)


    Erscheinungsdatum :

    01.09.2022


    Format / Umfang :

    571970 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    User-Pair Selection for QoS-Aware Secrecy Rate Maximization in Untrusted NOMA

    Thapar, Sapna / Mishra, Deepak / Saini, Ravikant et al. | IEEE | 2022


    Delay-Optimal Scheduling for Heterogeneous Users in NOMA Networks

    Hsu, Yu-Pin / Ho, Jeng-Shiun / Huang, Yu-Chih et al. | IEEE | 2018



    Efficient Design for NOMA Enabled Integrated Sensing and Semantic Communication

    Zhao, Zhouxiang / Tang, Yating / Yang, Yuzhi et al. | IEEE | 2024


    On Fairness Optimization for NOMA-Enabled Multi-Beam Satellite Systems

    Wang, Anyue / Lei, Lei / Lagunas, Eva et al. | BASE | 2019

    Freier Zugriff