Understanding people’s transportation modes is beneficial for empowering many intelligent transportation systems, such as supporting urban transportation planning. Yet, current methodologies in collecting travelers’ transportation modes are costly and inaccurate. Fortunately, the increasing sensing and computing capabilities of smartphones and their high penetration rate offer a promising approach to automatic transportation mode detection via mobile computation. This paper introduces a light-weighted and energy-efficient transportation mode detection system using only accelerometer sensors in smartphones. The system collects accelerometer data in an efficient way and leverages a deep learning model to determine transportation modes. Different architectures and classification methods are tested with the proposed deep learning model to optimize the system design. Performance evaluation shows that the proposed new approach achieves a better accuracy than existing work in detecting people’s transportation modes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Deep Learning Model for Transportation Mode Detection Based on Smartphone Sensing Data


    Beteiligte:
    Liang, Xiaoyuan (Autor:in) / Zhang, Yuchuan (Autor:in) / Wang, Guiling (Autor:in) / Xu, Songhua (Autor:in)


    Erscheinungsdatum :

    01.12.2020


    Format / Umfang :

    3174183 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Deep CNN-BiLSTM Model for Transportation Mode Detection Using Smartphone Accelerometer and Magnetometer

    Tang, Qinrui / Jahan, Kanwal / Roth, Michael | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2022

    Freier Zugriff


    Survey of smartphone‐based sensing in vehicles for intelligent transportation system applications

    Engelbrecht, Jarret / Booysen, Marthinus Johannes / van Rooyen, Gert‐Jan et al. | Wiley | 2015

    Freier Zugriff

    Survey of smartphone-based sensing in vehicles for intelligent transportation system applications

    Engelbrecht, Jarret / Booysen, Marthinus Johannes / van Rooyen, Gert-Jan et al. | IET | 2015

    Freier Zugriff