A real-time approach to detecting and tracking multiple objects for an urban driving environment in multi-layer laser data is proposed in this paper. Since situational awareness is crucial for autonomous driving in complicate urban environments, object detection and tracking with cameras or laser has become a popular research topic. With 3D range data, we take the advantage of geometry to cluster point cloud into objects in a fast way. Model-based object tracking framework used in this paper relies on Kalman filter. We set up geometry model for each object and evaluate the observation condition before model updating. We also provide the solution to complicate situations, like splitting, merging and degradation. Our approach has been applied to the multi-layer laser set up on our autonomous driving vehicle under different circumstances, and experiment results are presented.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Object detection and tracking using multi-layer laser for autonomous urban driving


    Beteiligte:
    Yutong Ye (Autor:in) / Liming Fu (Autor:in) / Bijun Li (Autor:in)


    Erscheinungsdatum :

    01.11.2016


    Format / Umfang :

    689898 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Embedded multi-sensors objects detection and tracking for urban autonomous driving

    Niknejad, H. T. / Takahashi, K. / Mita, S. et al. | IEEE | 2011


    Embedded Multi-Sensors Objects Detection and Tracking for Urban Autonomous Driving

    Tehrani Nik Nejad, H. / Takahashi, K. / Mita, S. et al. | British Library Conference Proceedings | 2011


    EchoTrack: Auditory Referring Multi-Object Tracking for Autonomous Driving

    Lin, Jiacheng / Chen, Jiajun / Peng, Kunyu et al. | IEEE | 2024


    Radar Based Object Detection and Tracking for Autonomous Driving

    Manjunath, Ankith / Liu, Ying / Henriques, Bernardo et al. | IEEE | 2018


    A Tracking-By-Detection Based 3D Multiple Object Tracking for Autonomous Driving

    Wang, Yingbo / Wang, Zhongli / Huang, Yuxiang et al. | British Library Conference Proceedings | 2022