A multi-layer perceptron type of artificial neural network predicts congested freeway data while demonstrating robustness to faulty loop detector data. Test results on historical data from the I-5 freeway in Seattle, Washington demonstrate that a neural network can successfully predict volume and occupancy one minute in advance, as well as fill in the gaps for missing data with an appropriate prediction. The volume and occupancy predictions are used as inputs to a fuzzy logic ramp metering algorithm currently under testing.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Freeway traffic data prediction using neural networks


    Beteiligte:
    Taylor, C. (Autor:in) / Meldrum, D. (Autor:in)


    Erscheinungsdatum :

    01.01.1995


    Format / Umfang :

    434097 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Freeway Traffic Data Prediction Using Neural Networks

    Taylor, C. / Meldrum, D. / IEEE et al. | British Library Conference Proceedings | 1995


    Freeway traffic data prediction using neural networks

    Taylor,C. / Meldrum,D. / Univ.of Washington,US | Kraftfahrwesen | 1995


    Freeway Traffic Prediction Using Neural Networks

    Cheu, R.-L. / American Society of Civil Engineers | British Library Conference Proceedings | 1998


    Congestion management of freeway traffic using artificial neural networks

    Ho, F.-S. / Ioannou, P. / International Federation of Automatic Control | British Library Conference Proceedings | 1997