A knowledge-aided spectral-domain approach to estimating the interference covariance matrix used in space-time adaptive processing (STAP) is proposed. Prior knowledge of the range-Doppler clutter scene is used to identify geographic regions with homogeneous scattering statistics. Then, minimum-variance spectral estimation is used to arrive at a spectral-domain clutter estimate. Finally, space-time steering vectors are used to transform the spectral-domain estimate into a data-domain estimate of the clutter covariance matrix. The proposed technique is compared with ideal performance and to the fast maximum likelihood technique using simulated results. An investigation of the performance degradation that can occur due to various inaccurate knowledge assumptions is also presented


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Spectral-domain covariance estimation with a priori knowledge


    Beteiligte:
    Gurram, P.R. (Autor:in) / Goodman, N.A. (Autor:in)


    Erscheinungsdatum :

    01.07.2006


    Format / Umfang :

    1547873 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    An approach to knowledge-aided covariance estimation

    Melvin, W.L. / Showman, G.A. | IEEE | 2006


    Radar Clutter Covariance Estimation: A Nonlinear Spectral Shrinkage Approach

    Jain, Shashwat / Krishnamurthy, Vikram / Rangaswamy, Muralidhar et al. | IEEE | 2023



    Regularized Reconstruction of Shapes with Statistical a priori Knowledge

    Fuchs, M. / Scherzer, O. | British Library Online Contents | 2008