An investigation of the feasibility of a mesh network of proximity sensors to track targets is presented. In such a network the sensors report binary detection/nondetection measurements for the targets within proximity. A new probability hypothesis density (PHD) filter and its particle implementation for multiple-target tracking in a proximity sensor network are proposed. The performance and robustness of the new method are evaluated over simulated matching and mismatching cases for the sensor models. The simulations demonstrate the utility of the PHD filter to both track the number of targets and their locations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Probability Hypothesis Density-Based Multitarget Tracking for Proximity Sensor Networks


    Beteiligte:
    Qiang Le (Autor:in) / Kaplan, L. M. (Autor:in)


    Erscheinungsdatum :

    01.07.2013


    Format / Umfang :

    10615680 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multitarget Tracking using Probability Hypothesis Density Smoothing

    Nadarajah, N. / Kirubarajan, T. / Lang, T. et al. | IEEE | 2011


    Multitarget tracking using the joint multitarget probability density

    Kreucher, C. / Kastella, K. / Hero, A.O. | IEEE | 2005



    A measurement-driven adaptive probability hypothesis density filter for multitarget tracking

    Si, Weijian / Wang, Liwei / Qu, Zhiyu | British Library Online Contents | 2015