The traffic accident prediction represents a vital role in the combined planning and management of traffic, the design which involve some nonlinear components, such as people, road, vehicle, weather and so on. The convention way of extended studies cannot expose the real situation since the noise corruption and amount of data are too small, so that the result of prediction cannot be satisfied. This paper proposes deep learning-based new road traffic accident prediction applying a “Convolutional Neural Network model” (CNN). It uses traffic accident influencing circumstances like light, weather, traffic flow to make a state matrix describing the traffic state and CNN model. This paper utilizes examples to examine the accuracy of the proposed model. The empirical results show that the proposed model is more efficient than the current neural network design to predict traffic accidents compared with the traditional “Backpropagation” (BP) algorithm


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic Accident Prediction based on CNN Model


    Beteiligte:


    Erscheinungsdatum :

    06.05.2021


    Format / Umfang :

    2053249 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Training method of traffic accident prediction model and traffic accident prediction method and device

    WANG NIANMING / CHEN YANG / ZHOU MINGKE et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Tunnel traffic flow and accident prediction model

    ZHENG QI / LI ZHIYANG / WANG PENGHUI | Europäisches Patentamt | 2025

    Freier Zugriff

    Prediction system for traffic accident

    BACK JU YONG | Europäisches Patentamt | 2019

    Freier Zugriff

    Road traffic accident prediction method

    WANG SHUNSHUN / YAN CHANGSHUN / SHAO YONG | Europäisches Patentamt | 2023

    Freier Zugriff

    Prediction system for traffic accident

    BACK JU YONG | Europäisches Patentamt | 2019

    Freier Zugriff