Stereo-LiDAR fusion is often used for autonomous systems such as self-driving cars as the two modalities are complementary to each other. Existing stereo-LiDAR fusion methods are mostly at feature level or outcome level, without considering the uncertainty of the depth estimation in each modality. To this end, we propose a holistic and contextual evidential stereo-LiDAR fusion network (HCENet) for depth estimation, which considers both intra-modality and inter-modality uncertainties from stereo matching and LiDAR point cloud depth completion. We design a dual network structure that consists of a stereo matching branch and a LiDAR depth completion branch with new introduced uncertainty estimation modules for both two branches. Specifically, a multi-scale depth guided feature aggregation module is first developed to enable information propagation at early input stage, and then followed by fusing the predicted depths from two branches based on evidential uncertainties to generate the final output. Extensive experimental results on KITTI depth completion and Virtual KITTI2 datasets achieve RMSE of 599.3 and 2253.1, and show that our method outperforms state-of-the-art SLFNet by 6.52% and 20.7%, respectively.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Holistic and Contextual Evidential Stereo-LiDAR Fusion for Depth Estimation


    Beteiligte:
    Fan, Jiayuan (Autor:in) / Chen, Haixiang (Autor:in) / Liu, Weide (Autor:in) / Xu, Xun (Autor:in) / Cheng, Jun (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.11.2024


    Format / Umfang :

    4747011 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    LiDAR - Stereo Camera Fusion for Accurate Depth Estimation

    Cholakkal, Hafeez Husain / Mentasti, Simone / Bersani, Mattia et al. | IEEE | 2020


    High-Precision Depth Estimation Using Uncalibrated LiDAR and Stereo Fusion

    Park, Kihong / Kim, Seungryong / Sohn, Kwanghoon | IEEE | 2020


    Evidential occupancy grid mapping with stereo-vision

    Yu, Chunlei / Cherfaoui, Veronique / Bonnifait, Philippe | IEEE | 2015


    Depth map estimation with stereo images

    Europäisches Patentamt | 2017

    Freier Zugriff

    Fusion of Lidar and Stereo Point Clouds using Bayesian Networks

    Schimpf, Felix | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2018

    Freier Zugriff