In the realm of multivariate anomaly detection (AD), deep neural networks (DNNs) have garnered attention. However, relying solely on a single DNN model may not achieve the optimal balance between accuracy and time efficiency. Nonlinear variants of Kalman filter models (extended kalman filter (EKF), unscented kalman filter (UKF)) are known for their efficient time complexity but often compromise accuracy. On the other hand, deep learning-based models like Transformers and recurrent NNsexcel in accuracy but introduce complexity challenges. This article introduces the selective points AD method, which strategically merges accurate and time-efficient algorithms by leveraging a selection of multiple models. The optimal model fusion that maximizes the accuracy-to-time ratio (ATR) is determined by assessing the estimated covariance from both sets of algorithms. The results demonstrate a superior ATR by at least 30% and 33% compared to the best existing method for soil moisture active passive and Mars science laboratory rover datasets, respectively.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Uncompromised Accuracy: Fast and Reliable Multivariate Anomaly Detection for Satellite Signals


    Beteiligte:


    Erscheinungsdatum :

    01.04.2025


    Format / Umfang :

    2033057 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Uncompromised air freighter project for 1975

    Douglas, A.F. / Linder, D.L. / Okazaki, A.S. et al. | Engineering Index Backfile | 1968


    The BMW SULEV (PZEV) Concept-Uncompromised Emissions Reduction

    Landerl, C. / Liebl, J. / Hofmann, R. et al. | British Library Conference Proceedings | 2003


    Multivariate Hierarchical Anomaly Detection

    UCAR SEYHAN / MERCER RYAN | Europäisches Patentamt | 2022

    Freier Zugriff