Alongside optimization-based planners, sampling-based approaches are often used in trajectory planning for autonomous driving due to their simplicity. Model predictive path integral control is a framework that builds upon optimization principles while incorporating stochastic sampling of input trajectories. This paper investigates several sampling approaches for trajectory generation. In this context, normalizing flows originating from the field of variational inference are considered for the generation of sampling distributions, as they model transformations of simple to more complex distributions. Accordingly, learning-based normalizing flow models are trained for a more efficient exploration of the input domain for the task at hand. The developed algorithm and the proposed sampling distributions are evaluated in two simulation scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Sampling for Model Predictive Trajectory Planning in Autonomous Driving using Normalizing Flows


    Beteiligte:
    Rabenstein, Georg (Autor:in) / Ullrich, Lars (Autor:in) / Graichen, Knut (Autor:in)


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    1240817 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Cooperative Trajectory Planning for Autonomous Driving Using Nonlinear Model Predictive Control

    Viana, Icaro Bezerra / Kanchwala, Hussain / Aouf, Nabil | IEEE | 2019


    Model Predictive Trajectory Planning of Autonomous Vehicles Considering Dynamic Driving Constraints

    Qiao, Chenglei / Pollmeyer, Stephan / Wang, Yang et al. | IEEE | 2020


    Model Predictive Trajectory Planning for Automated Driving

    Yi, Boliang / Bender, Philipp / Bonarens, Frank et al. | IEEE | 2019