This paper introduces a lightweight approach for detecting distant aerial targets using onboard camera mounted on unmanned aerial vehicle (UAV). Building upon YOLOv8, we propose the integration of the C3Ghost algorithm to enhance the backbone network, reducing model parameters. We also employ the effective feature fusion (EFF) module to achieve more comprehensive feature fusion. Additionally, a novel detection box loss function is proposed. The effectiveness of these improvements is validated on a dataset, demonstrating significant performance gains in the task of detecting small targets.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Lightweight and Efficient Air-to-Air Unmanned Aerial Vehicle Detection Neural Networks


    Beteiligte:
    Wang, Chuanyun (Autor:in) / Li, Zhenfei (Autor:in) / Gao, Qian (Autor:in) / Cui, Tong (Autor:in) / Sun, Dongdong (Autor:in) / Jiang, Wang (Autor:in)


    Erscheinungsdatum :

    13.10.2023


    Format / Umfang :

    1738552 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Lightweight unmanned aerial vehicle framework and unmanned aerial vehicle thereof

    ZHU FEI / LIANG HAOJUN / GUO BILIN et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Lightweight multifunctional unmanned aerial vehicle

    YANG KUN / LONG YONG / ZHANG PENGYU | Europäisches Patentamt | 2025

    Freier Zugriff

    Lightweight Trustworthy Message Exchange in Unmanned Aerial Vehicle Networks

    Liu, Zhiquan / Guo, Jingjing / Huang, Feiran et al. | IEEE | 2023


    LIGHTWEIGHT UNMANNED AERIAL VEHICLE OF HELICOPTER TYPE

    FETISOV VLADIMIR STANISLAVOVICH / KILMETOV RAFAEL AJDAROVICH | Europäisches Patentamt | 2020

    Freier Zugriff