Abdominal visceral fat accumulation is one of the most important cardiovascular risk factors. Currently, Computed Tomography and Magnetic Resonance images are manually segmented to quantify abdominal fat distribution. The manual delineation of subcutaneous and visceral fat is labor intensive, time consuming, and subject to inter- and intra-observer variability. An automatic segmentation method would eliminate intra- and inter-observer variability and provide more consistent results. In this paper, we present a hierarchical, multi-class, multi-feature, fuzzy affinity-based computational framework for tissue segmentation in medical images. We have applied this framework for automatic segmentation of abdominal fat. An evaluation of the accuracy of our method indicates bias and limits of agreement comparable to the inter-observer variability inherent in manual segmentation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Automatic Segmentation of Abdominal Fat from CT Data


    Beteiligte:


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    586908 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    AUTOMATIC SEGMENTATION OF GEOSPATIAL AIRPORT DATA

    PSCHIERER CHRISTIAN KARL | Europäisches Patentamt | 2025

    Freier Zugriff

    Comparative Analysis of Deep Learning-Based Abdominal Multivisceral Segmentation

    Zou, Junting / Arshad, Mohd Rizal | Springer Verlag | 2024




    Techniques for Automatic Image Segmentation

    Kalivanov, A.Zh | Online Contents | 1999