An accurate and robust localization system is crucial for autonomous vehicles (AVs) to enable safe driving in urban scenes. While existing global navigation satellite system (GNSS)-based methods are effective at locating vehicles in open-sky regions, achieving high-accuracy positioning in urban canyons such as lower layers of multi-layer bridges, streets beside tall buildings, tunnels, etc., remains a challenge. In this paper, we investigate the potential of cellular-vehicle-to-everything (C-V2X) wireless communications in improving the localization performance of AVs under GNSS-denied environments. Specifically, we propose the first roadside unit (RSU)-based cooperative localization framework, namely CV2X-LOCA, that only uses C-V2X channel state information to achieve lane-level positioning accuracy. CV2X-LOCA consists of four key parts: data processing module, coarse positioning module, environment parameter correcting module, and vehicle trajectory filtering module. These modules jointly handle challenges present in dynamic C-V2X networks. Extensive simulation and field experiments show that CV2X-LOCA achieves state-of-the-art performance for vehicle localization even under noisy conditions with high-speed movement and sparse RSU coverage environments. While focusing on AV localization, CV2X-LOCA also can extend to other C-V2X-equipped road users. The study results also provide insights into future investment decisions for transportation agencies regarding deploying RSUs cost-effectively.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Toward C-V2X Enabled Connected Transportation System: RSU-Based Cooperative Localization Framework for Autonomous Vehicles


    Beteiligte:
    Huang, Zilin (Autor:in) / Chen, Sikai (Autor:in) / Pian, Yuzhuang (Autor:in) / Sheng, Zihao (Autor:in) / Ahn, Soyoung (Autor:in) / Noyce, David A. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.10.2024


    Format / Umfang :

    3773910 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Graph based Cooperative Localization for Connected and Semi-Autonomous Vehicles

    Nikos Piperigkos / Aris S. Lalos / Kostas Berberidis | BASE | 2020

    Freier Zugriff

    Cooperative Multi-Modal Localization in Connected and Autonomous Vehicles

    Piperigkos, Nikos / Lalos, Aris S. / Berberidis, Kostas et al. | IEEE | 2020


    Cooperative localization for autonomous underwater vehicles

    Bahr, Alexander | DSpace@MIT | 2009

    Freier Zugriff


    AI-enabled technologies for autonomous and connected vehicles

    Murphey, Yi Lu ;Kolmanovsky, Ilya V. ;Watta, Paul | TIBKAT | 2023