Trajectory planning is a crucial task in designing the navigation systems of automatic underwater vehicles (AUVs). Due to the complexity of underwater environments, decision makers may hope to obtain multiple alternative trajectories in order to select the best. This paper focuses on the multiple-trajectory planning (MTP) problem, which is a new topic in this field. First, we establish a comprehensive MTP model for AUVs, by taking into account the complex underwater environments, the efficiency of each trajectory, and the diversity among different trajectories, simultaneously. Then, to solve the MTP, we develop an ant colony-based trajectory optimizer, which is characterized by a niching strategy, a decayed alarm pheromone measure, and a diversified heuristic measure. The niching strategy assists in identifying and maintaining a diverse set of high-quality solutions. The use of decayed alarm pheromone and diversified heuristic further improves the search effectiveness and efficiency of the algorithm. Experimental results on practical datasets show that our proposed algorithm not only provides multiple AUV trajectories for a flexible choice, but it also outperforms the state-of-the-art algorithms in terms of the single trajectory efficiency.
MTrajPlanner: A Multiple-Trajectory Planning Algorithm for Autonomous Underwater Vehicles
IEEE Transactions on Intelligent Transportation Systems ; 24 , 4 ; 3714-3727
01.04.2023
6129463 byte
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Vertical Trajectory Planning for Autonomous Vehicles
TIBKAT | 2021
|Vertical Trajectory Planning for Autonomous Vehicles
Springer Verlag | 2021
|Liveness-Based RRT Algorithm for Autonomous Underwater Vehicles Motion Planning
DOAJ | 2017
|