Traffic congestion anomaly detection is of paramount importance in intelligent traffic systems. The goals of transportation agencies are two-fold: to monitor the general traffic conditions in the area of interest and to locate road segments under abnormal congestion states. Modeling congestion patterns can achieve these goals for citywide roadways, which amounts to learning the distribution of multivariate time series (MTS). However, existing works are either not scalable or unable to capture the spatial-temporal information in MTS simultaneously. To this end, we propose a principled and comprehensive framework consisting of a data-driven generative approach that can perform tractable density estimation for detecting traffic anomalies. Our approach first clusters segments in the feature space and then uses conditional normalizing flow to identify anomalous temporal snapshots at the cluster level in an unsupervised setting. Then, we identify anomalies at the segment level by using a kernel density estimator on the anomalous cluster. Extensive experiments on synthetic datasets show that our approach significantly outperforms several state-of-the-art congestion anomaly detection and diagnosis methods in terms of Recall and F1-Score. We also use the generative model to sample labeled data, which can train classifiers in a supervised setting, alleviating the lack of labeled data for anomaly detection in sparse settings.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic Anomaly Detection Via Conditional Normalizing Flow


    Beteiligte:
    Kang, Zhuangwei (Autor:in) / Mukhopadhyay, Ayan (Autor:in) / Gokhale, Aniruddha (Autor:in) / Wen, Shijie (Autor:in) / Dubey, Abhishek (Autor:in)


    Erscheinungsdatum :

    08.10.2022


    Format / Umfang :

    1132865 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A MACHINE LEARNABLE SYSTEM WITH CONDITIONAL NORMALIZING FLOW

    BHATTACHARYYA APRATIM / STRAEHLE CHRISTOPH-NIKOLAS | Europäisches Patentamt | 2021

    Freier Zugriff

    Inverse Design Under Uncertainty Using Conditional Normalizing Flows

    Tsilifis, Panagiotis / Ghosh, Sayan / Andreoli, Valeria | TIBKAT | 2022


    Inverse Design under Uncertainty using Conditional Normalizing Flows

    Tsilifis, Panagiotis / Ghosh, Sayan / Andreoli, Valeria | AIAA | 2022


    Inverse Design Under Uncertainty Using Conditional Normalizing Flows

    Tsilifis, Panagiotis / Ghosh, Sayan / Andreoli, Valeria | TIBKAT | 2022


    Training and data synthesis and probability inference using nonlinear conditional normalizing flow model

    BHATTACHARYYA APRATIM / STRAEHLE CHRISTOPH-NIKOLAS | Europäisches Patentamt | 2021

    Freier Zugriff