The optimal number of clusters (K) differs depending on the radio remote head (RRH) density. This paper verifies that the K values cannot be met by the conventional affinity propagation (AP) clustering algorithm. In an ultra-dense network (UDN) environment, the density of RRH is a very important factor for the bender because it is directly related to the cost of configuring the wireless communication network. Likewise, in order to provide the optimal communication environment to the user in the UDN environment, it is necessary to enable flexible clustering according to changing channel environment by utilizing semi-dynamic clustering technology. As a result, we propose an AP algorithm that finds a better K value than the conventional method. To this end, the proposed algorithm additionally utilizes a non-coordinated multi-point (CoMP) interference power that varies depending on the RRH density, user position, and the variations in propagation channel. The simulation results show that the proposed algorithm shows a better average capacity than the conventional algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Radio Remote Head Clustering with Affinity Propagation Algorithm in C-RAN


    Beteiligte:
    Park, Seju (Autor:in) / Jo, Han-Shin (Autor:in) / Mun, Cheol (Autor:in) / Yook, Jong-Gwan (Autor:in)


    Erscheinungsdatum :

    01.09.2019


    Format / Umfang :

    461476 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    An Enhanced Stream Clustering Algorithm Based on Affinity Propagation

    Zhao, Jianlong / Qu, Hua / Zhao, Jihong et al. | British Library Online Contents | 2017


    Affinity Propagation Clustering with Incomplete Data

    Lu, Cheng / Song, Shiji / Wu, Cheng | Springer Verlag | 2014


    Affinity Propagation Clustering with Incomplete Data

    Lu, C. / Song, S. / Wu, C. | British Library Conference Proceedings | 2014


    Affinity propagation clustering algorithm based on large-scale data-set

    Wang, Limin / Zheng, Kaiyue / Tao, Xing et al. | British Library Online Contents | 2018


    Dynamic RRH Clustering using Affinity Propagation Algorithm in Ultra-Dense C-RAN

    Park, Seju / Jo, Han-Shin / Mun, Cheol et al. | IEEE | 2020