Currently, an independent car's driving method is chosen based on external criteria (pedestrian crossings, road surfaces, etc.) without considering the car's interior state. “A Driving Decision Approach (DDS) Based on Machine Learning for an Autonomous Vehicle” predicts the proper approach for an autonomous vehicle by searching outside and inside factors. The DDS trains a genetic set of rules that develops an autonomous car's best use method using cloud-based sensor information. The proposed DDS with rules compares to Random Forest and MLP (multilayer perceptron set of rules). Precise DDS beats random forest and MLP. This study compared DDS to MLP and RF neural community models. The DDS had a 5% lower loss rate than conventional car gateways in the study, and it computed Revolutions per minute, speed, direction angle, and converting lanes 40% faster than the MLP and 22% faster than the RF neural networks. DDS provides sensor records to a genetic collection of rules, which chooses the most acceptable value for extra unique prediction.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Driving Decision Strategy (DDS) Based on Machine learning for an autonomous vehicle


    Beteiligte:
    Kumari, E.N. Vijaya (Autor:in) / Swetha, K. (Autor:in) / Navya, Soleti (Autor:in)


    Erscheinungsdatum :

    19.11.2022


    Format / Umfang :

    406456 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    ST-GRAPH LEARNING BASED DECISION FOR AUTONOMOUS DRIVING VEHICLE

    XU KECHENG / FAN HAOYANG / ZHANG YAJIA et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    ST-graph learning based decision for autonomous driving vehicle

    XU KECHENG / FAN HAOYANG / ZHANG YAJIA et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    A Novel Machine Learning based Driving Decision Strategy

    Sahithi, P / Sravanthi, V / Vanetha, V.G et al. | IEEE | 2023


    AUTONOMOUS DRIVING DECISION PLANNING AND AUTONOMOUS VEHICLE

    LI XIAO / HE YICHEN / DING SHUGUANG et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    PREDICTIVE POWERTRAIN LIMIT STRATEGY FOR AUTONOMOUS DRIVING VEHICLE/AUTOMATIC DRIVING VEHICLE

    BRIAN MCKAY / IHAB SOLIMAN | Europäisches Patentamt | 2018

    Freier Zugriff