Subspace representations have been a popular way to model appearance in computer vision. In Jepson and Black's influential paper on EigenTracking, they were successfully applied in tracking. For noisy targets, optimization-based algorithms (including EigenTracking) often fail catastrophically after losing track. Particle filters have recently emerged as a robust method for tracking in the presence of multi-modal distributions. To use subspace representations in a particle filter, the number of samples increases exponentially as the state vector includes the subspace coefficients. We introduce an efficient method for using subspace representations in a particle filter by applying Rao-Blackwellization to integrate out the subspace coefficients in the state vector. Fewer samples are needed since part of the posterior over the state vector is analytically calculated. We use probabilistic principal component analysis to obtain analytically tractable integrals. We show experimental results in a scenario in which we track a target in clutter.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Rao-Blackwellized particle filter for EigenTracking


    Beteiligte:
    Zia Khan, (Autor:in) / Balch, T. (Autor:in) / Dellaert, F. (Autor:in)


    Erscheinungsdatum :

    01.01.2004


    Format / Umfang :

    411408 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Rao-Blackwellized Particle Filter for EigenTracking

    Khan, Z. / Balch, T. / Dellaert, F. et al. | British Library Conference Proceedings | 2004


    Geomagnetic Aided Navigation Using Rao Blackwellized Particle Filter

    Cuenca, Andrei / Moncayo, Hever | TIBKAT | 2023


    Rao-blackwellized particle filter for turn rate estimation

    Flaten, Andreas L. / Brekke, Edmund F. | IEEE | 2017



    Geomagnetic Aided Navigation Using Rao Blackwellized Particle Filter

    Cuenca, Andrei / Moncayo, Hever | TIBKAT | 2023