We consider the problem of engineering robust direct perception neural networks with the output being regression. Such networks take high dimensional input image data, and they produce affordances such as the curvature of the upcoming road segment or the distance to the front vehicle. Our proposal starts by allowing a neural network prediction to deviate from the label with tolerance Δ. The source of tolerance can be either contractual or from limiting factors where two entities may label the same data with slightly different numerical values. The tolerance motivates the use of a non-standard loss function where the loss is set to 0 so long as the prediction-to-label distance is less than Δ. We further extend the loss function and define a new provably robust criterion that is parametric to the allowed output tolerance Δ, the layer index $l$ where perturbation is considered, and the maximum perturbation amount $k$. During training, the robust loss is computed by first propagating symbolic errors from the l-th layer (with quantity bounded by $k$) to the output layer, followed by computing the overflow between the error bounds and the allowed tolerance. The overall concept is experimented in engineering a direct perception neural network for understanding the central position of the ego-lane in pixel coordinates.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Towards Robust Direct Perception Networks for Automated Driving


    Beteiligte:


    Erscheinungsdatum :

    19.10.2020


    Format / Umfang :

    859034 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    TOWARDS ROBUST DIRECT PERCEPTION NETWORKS FOR AUTOMATED DRIVING

    Cheng, Chih-Hong | British Library Conference Proceedings | 2020


    Fault-tolerant environmental perception architecture for robust automated driving

    Grubmuller, Stephanie / Stettinger, Georg / Sotelo, Miguel Angel et al. | IEEE | 2019


    NeurAll: Towards a Unified Visual Perception Model for Automated Driving

    Sistu, Ganesh / Leang, Isabelle / Chennupati, Sumanth et al. | IEEE | 2019


    Adaptive rationalizer for vehicle perception systems toward robust automated driving control

    SHAHRIARI MOHAMMADALI / ZARRINGHALAM REZA / DALZELL HALEY MARIE et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Towards Realistic Evaluation of Collective Perception for Connected and Automated Driving

    Volk, Georg / Delooz, Quentin / Schiegg, Florian A. et al. | IEEE | 2021