Modern tracking problems require fast, scalable, and robust solutions for tracking multiple targets from noisy sensor data. In this article, an algorithm that has linear computational complexity with respect to the number of targets and measurements is presented. The method is based on the propagation of the first two factorial cumulants of a point process. The algorithm is demonstrated for tracking a million targets in cluttered environments in the fastest time yet for any such solution. A low-computational-complexity solution to the problem of joint multitarget tracking and parameter estimation is also presented. The multitarget filtering approach utilizes a single-cluster point process method for joint multiobject estimation and parameter estimation and is shown to be more computationally efficient and robust than previous implementations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Algorithm for Large-Scale Multitarget Tracking and Parameter Estimation


    Beteiligte:


    Erscheinungsdatum :

    01.08.2021


    Format / Umfang :

    5522265 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Parallel Retrodiction Algorithm for Large-Scale Multitarget Tracking

    Yeung, Siu Lun / Tager, Sean / Wilson, Paul et al. | IEEE | 2021


    Multitarget tracking algorithm performance evaluation

    Zheng, H. Farooq, M. Main, R. R. | British Library Conference Proceedings | 1999


    Decentralized Sensor Selection for Large-Scale Multisensor-Multitarget Tracking

    Tharmarasa, R / Kirubarajan, T / Sinha, A et al. | IEEE | 2011


    A practical bias estimation algorithm for multisensor-multitarget tracking

    Taghavi, Ehsan / Tharmarasa, Ratnasingham / Kirubarajan, Thia et al. | IEEE | 2016