Future driving cycles are subject to a number of regulations and requirements. A vehicles ability to meet the emission regulations under real-life conditions is based on a precise testing procedure. Additionally, intelligent vehicle design needs to be customer oriented. The requirements for an optimum drivetrain design have to be deviated from the customers driving behavior. Especially in the price sensitive long-haul business. In a new approach the Markov-Chain Method (MC) is applied to fleet testing data from the research project Truck2030. Two different transportation companies collected 95,279 km in long-haul traffic. The objective is to find a shortened driving cycle with the quality to represent the original fleet testing data. The designed MC is focused on topographic and dynamic information of the dataset. The results show a discrepancy below 1 % in fuel consumption error between the original fleet testing data and the representative driving cycle.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Derivation of a real-life driving cycle from fleet testing data with the Markov-Chain-Monte-Carlo Method


    Beteiligte:
    Fries, Michael (Autor:in) / Baum, Alexandre (Autor:in) / Wittmann, Michael (Autor:in) / Lienkamp, Markus (Autor:in)


    Erscheinungsdatum :

    01.11.2018


    Format / Umfang :

    675330 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Image segmentation by data driven Markov chain Monte Carlo

    Zhuowen Tu, / Song-Chun Zhu, / Heung-Yeung Shum, | IEEE | 2001



    Image Segmentation by Data Driven Markov Chain Monte Carlo

    Tu, Z. / Zhu, S. / Shum, H. et al. | British Library Conference Proceedings | 2001


    Markov Chain Monte Carlo Modular Ensemble Tracking

    Penne, T. / Tilmant, C. / Chateau, T. et al. | British Library Online Contents | 2013