This paper describes a memristor-based neuromorphic system that can be used for ex-situ training of various multi-layer neural network algorithms. This system is based on an analog neuron circuit that is capable of performing an accurate dot product calculation. The presented ex-situ programming technique can be used to map many key neural algorithms directly onto the grid of resistances in a memristor crossbar. Using this weight-to-crossbar mapping approach along with the dot product calculation circuit, complex neural algorithms can be easily implemented using this system. To show the effectiveness and versatility of this circuit, a Multilayer Perceptron (MLP) is trained to perform Sobel edge detection. Following these simulations, an analysis was presented that shows how both memristor accuracy and neuron circuit gain relates to output error. Additionally, this paper discusses how circuit noise and neural network layout contribute to testing accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Memristor crossbar based implementation of a multilayer perceptron


    Beteiligte:
    Yakopcic, Chris (Autor:in) / Taha, Tarek M. (Autor:in)


    Erscheinungsdatum :

    01.06.2017


    Format / Umfang :

    521715 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Hybrid crossbar architecture for a memristor based memory

    Yakopcic, Chris / Taha, Tarek M. / Hasan, Raqibul | IEEE | 2014



    Cognitive domain ontologies in a memristor crossbar architecture

    Yakopcic, Chris / Rahman, Nayim / Atahary, Tanvir et al. | IEEE | 2017


    Evaluation of Leakage Currents in Memristor Crossbar Arrays

    Kasongo, Muana / Ytterdal, Trond / Lee, John et al. | IEEE | 2023


    Modular, Multilayer Perceptron

    Cheng, Li-Jen / Liu, Tsuen-Hsi | NTRS | 1991