Static models and simulations are commonly used in urban traffic management but none feature a dynamic element for near real-time traffic control. This work presents an artificial neural network forecaster methodology applied to traffic flow condition prediction. The spatially distributed architecture uses life-long learning with a novel adaptive Artificial Neural Network based filter to detect and remove outliers from training data. The system has been designed to support traffic engineers in their decision making to react to traffic conditions before they get out of control. We performed experiments using feed-forward backpropagation, cascade-forward back-propagation, radial basis, and generalized regression Artificial Neural Networks for this purpose. Test results on actual data collected from the city of Leicester, UK, confirm our approach to deliver suitable forecasts.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adapting traffic simulation for traffic management: A neural network approach


    Beteiligte:


    Erscheinungsdatum :

    01.10.2013


    Format / Umfang :

    188195 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic management system applying deep neural network to intelligent traffic

    LIN XINGYE | Europäisches Patentamt | 2021

    Freier Zugriff

    Adapting brake clearance to traffic conditions

    MARX ANDREAS / QUERBACH FRANK | Europäisches Patentamt | 2024

    Freier Zugriff


    Traffic management in a traffic network

    CASSINELLI PASCAL / JURKA ZDENEK | Europäisches Patentamt | 2016

    Freier Zugriff

    A Neural Network Approach for Data Assimilation in Traffic Flow Management

    Manderfield, Tyler / Vargo, Erik / Taylor, Christine P. | AIAA | 2024