This paper presents a new approach to Fault-Tolerant Control (FTC), addressing the complexities inherent in vehicle dynamics and steering actuator faults. By combining the sliding mode (SM) method and the Generalized Regression Neural Network (GRNN) for their compensation, this novel approach introduces a single estimator to consider a complete dynamic system that incorporates all nonlinearities and actuator faults. Inspired by conventional Model-Free Control (MFC) techniques, which often rely on specific model assumptions, we propose a new adaptive model-free control structure based on local measurements. Furthermore, we introduce an innovative event-triggered control mechanism that activates control actions only when necessary, where the system closed-loop stability is demonstrated through a rigorous Lyapunov theory analysis. This strategy not only enhances system efficiency but also reduces energy consumption and processing overhead in computing systems. The effectiveness of our approach is demonstrated through numerical simulations and experimental tests, particularly in lateral Lane-Keeping Assist (LKA) systems for Steer-by-Wire (SBW) vehicle. Overall, our contributions advance the field of fault-tolerant control, offering practical solutions for real-world applications.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Event-Triggered Adaptive Fault-Tolerant Control Based on Sliding Mode/Neural Network for Lane Keeping Assistance Systems in Steer-by-Wire Vehicles


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.03.2025


    Format / Umfang :

    3438809 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Event-Triggered Adaptive Fault Tolerant Sliding Mode Control for FWID-EV

    Li, Fengyang / Chen, Yong / Tang, Hui et al. | IEEE | 2024



    Fault tolerant control of rear steer vehicles

    PRAMOD PRERIT / EICKHOLT MICHAEL A / HOLM DAVID P et al. | Europäisches Patentamt | 2024

    Freier Zugriff