A new approach to multivariate detection has been devised, which replaces the generalized likelihood ratio (GLR) with another, the Bayesian likelihood ratio (BLR). The new test is partly based on selectable prior distributions of the parameters appearing in the GLR. Through these distributions, the method facilitates the incorporation of prior knowledge generated by simple physics and experience in measurement programs. This paper explores these potentialities by applying the new formalism to the problem of matched subspace detection in hyperspectral data sets.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Hyperspectral target detection using a Bayesian likelihood ratio test


    Beteiligte:
    Schaum, A. (Autor:in)


    Erscheinungsdatum :

    01.01.2002


    Format / Umfang :

    235555 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    6.0106 Hyperspectral Target Detection using a Bayesian Likelihood Ratio Test

    Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2002


    A Space Object Detection Algorithm using Fourier Domain Likelihood Ratio Test

    Becker, David | British Library Conference Proceedings | 2017



    HYPERSPECTRAL NAVAL TARGET DETECTION

    CHOINIERE MICHAEL J / DINNDORF KENNETH | Europäisches Patentamt | 2020

    Freier Zugriff

    Hyperspectral naval target detection

    CHOINIERE MICHAEL J / DINNDORF KENNETH | Europäisches Patentamt | 2021

    Freier Zugriff