Aerial communication using directional antennas (ACDA) is a promising solution to enable long-distance and broad-band unmanned aerial vehicle (UAV)-to-UAV communication. The automatic alignment of directional antennas allows transmission energy to focus in certain direction and hence significantly extends communication range and rejects interference. In this paper, we develop reinforcement learning (RL)-based on-line directional antennas control solutions for the ACDA system. The novel stochastic optimal control algorithm integrates RL, an effective uncertainty evaluation method called multivariate probabilistic collocation method (MPCM), and unscented Kalman Filter (UKF) for the nonlinear random switching dynamics. Simulation studies are conducted to illustrate and validate the proposed solutions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Learning and Uncertainty-Exploited Directional Antenna Control for Robust Aerial Networking


    Beteiligte:
    Liu, Mushuang (Autor:in) / Wan, Yan (Autor:in) / Li, Songwei (Autor:in) / Lewis, Frank L. (Autor:in)


    Erscheinungsdatum :

    01.09.2019


    Format / Umfang :

    556736 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    DIRECTIONAL ANTENNA ROTATING HOLDER FOR UNMANNED AERIAL VEHICLES

    Europäisches Patentamt | 2025

    Freier Zugriff

    Hybrid Control of Long Endurance Unmanned Aerial Vehicles for Robust Wireless Communication Networking

    Lee, D. / Andersson, K. / Jones, K. et al. | British Library Conference Proceedings | 2009


    Robust adaptive control of quadrotor unmanned aerial vehicle with uncertainty

    Islam, S. / Faraz, M. / Ashour, R. K. et al. | IEEE | 2015



    REVIEWS - The Exploited Seas

    Holm | Online Contents | 2003