This paper implements an automated transportation system allowing passengers on a car-like robot to reach their destination safely, intelligently and autonomously. Different components of the system are described such as localization based on Hector SLAM, humans detection based on HOG (Histograms of Oriented Gradient) descriptor and intelligent navigation based on FNN (Fuzzy neural networks) approach. To show the whole system effectiveness for the car-like mobile robot Robucar, experimentations were done in ROS, in an unknown human environment.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Car-like mobile robot navigation in unknown urban areas


    Beteiligte:
    Brahimi, Somia (Autor:in) / Tiar, Rachid (Autor:in) / Azouaoui, Ouahiba (Autor:in) / Lakrouf, Mustapha (Autor:in) / Loudini, Malik (Autor:in)


    Erscheinungsdatum :

    01.11.2016


    Format / Umfang :

    801527 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Hybrid Mobile Robot Controller for Reactive Navigation in Unknown Environment

    Bonar, Bartłomiej / Buratowski, Tomasz | Springer Verlag | 2024




    Learning sensor-based navigation of a real mobile robot in unknown worlds

    Araújo, Rui / Almeida, Aníbal T. de | BASE | 1999

    Freier Zugriff

    Mobile Robot Navigation in Unknown Dynamic Environment Inspired by Human Pedestrian Behavior

    Kakoty, Nayan M. / Mazumdar, Mridusmita / Sonowal, Durlav | Springer Verlag | 2018