Automatic itinerary planning that provides an epic journey for each traveler is a fundamental yet inefficient task. Most existing planning methods apply heuristic guidelines for certain objective, and thereby favor popular preferred point of interests (POIs) with high probability, which ignore the intrinsic correlation between the POIs exploration, traveler’s preferences, and distinctive attractions. To tackle the itinerary planning problem, this paper explores the connections of these three objectives in probabilistic manner based on a Bayesian model and proposes a triple-agent deep reinforcement learning approach, which generates 4-way direction, 4-way distance, and 3-way selection strategy for iteratively determining next POI to visit in the itinerary. Experiments on five real-world cities demonstrate that our triple-agent deep reinforcement learning approach can provide better planning results in comparison with state-of-the-art multiobjective optimization methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Automatic Itinerary Planning Using Triple-Agent Deep Reinforcement Learning


    Beteiligte:
    Chen, Bo-Hao (Autor:in) / Han, Jin (Autor:in) / Chen, Shengxin (Autor:in) / Yin, Jia-Li (Autor:in) / Chen, Zhaojiong (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.10.2022


    Format / Umfang :

    3732410 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    ATIPS: Automatic Travel Itinerary Planning System for Domestic Areas

    Hsien-Tsung Chang / Yi-Ming Chang / Meng-Tze Tsai | DOAJ | 2016

    Freier Zugriff

    EV-planning: Electric vehicle itinerary planning

    Mehar, Sara / Senouci, Sidi Mohammed / Remy, Guillaume | IEEE | 2013



    ROBUST PASSENGER ITINERARY PLANNING USING TRANSIT AVL DATA

    Hickman, M. / IEEE | British Library Conference Proceedings | 2002


    Automatic driving decision planning method based on deep reinforcement learning and deep learning

    YANG LU / ZHANG HAO / TAN YANSONG et al. | Europäisches Patentamt | 2024

    Freier Zugriff