This paper proposes a resource allocation policy which enhances physical layer security in vehicular communication networks. Due to the high mobility in vehicular networks, the feedback channel state information (CSI) can easily get outdated, especially when it takes non-negligible time to obtain the resource-allocation solution. Under the assumption that only outdated CSI is available, we formulate the problem as joint power and subcarrier allocation in order to optimize the uses' secrecy rate based on maximum-minimum (max-min) fairness criterion. The formulated optimization problem is a mixed integer nonlinear programming problem. To reduce the complexity, we further propose a two-step suboptimal algorithm that performs power and subcarrier allocation separately. For a given subcarrier assignment, the optimal power allocation is solved by developing an algorithm of polynomial computational complexity. Numerical results show that the performance of our proposed algorithm can approximate to the optimal one.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Secrecy-Based Resource Allocation for Vehicular Communication Networks with Outdated CSI


    Beteiligte:
    Yang, Wei (Autor:in) / Zhang, Rongqing (Autor:in) / Chen, Chen (Autor:in) / Cheng, Xiang (Autor:in)


    Erscheinungsdatum :

    01.09.2017


    Format / Umfang :

    206601 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Learning-Based Resource Allocation for Backscatter-Aided Vehicular Networks

    Khan, Wali Ullah / Nguyen, Tu N. / Jameel, Furqan et al. | IEEE | 2022



    Priority-Based Resource Allocation in Vehicular Communication Using Q-Learning

    Pandey, Divyanshu / Sakuru, K. L. V. Sai Prakash | IEEE | 2024


    A Survey on Resource Allocation in Vehicular Networks

    Noor-A-Rahim, Md. / Liu, Zilong / Lee, Haeyoung et al. | IEEE | 2022

    Freier Zugriff