In this paper, we propose a computational model of driver lateral control based on the queuing network cognitive architecture and the driver preview model about driver lateral control activities. This computational model was applied to model the dual tasks of driving with a cognitive distraction task. The comparison between human driver data and model simulation data shows that this computational model can perform vehicle lateral control well, and its performance is consistent with that of drivers under single- and dual-task driving conditions. Furthermore, we examine the effectiveness of some parameters of the model in representing different styles of driving and discuss the value of this computational model in facilitating the evaluation of vehicle dynamics and driver assistant systems and providing new insights into research on unmanned vehicle control techniques.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Queuing Network Modeling of Driver Lateral Control With or Without a Cognitive Distraction Task


    Beteiligte:
    Bi, Luzheng (Autor:in) / Gan, Guodong (Autor:in) / Shang, Junxing (Autor:in) / Liu, Yili (Autor:in)


    Erscheinungsdatum :

    01.12.2012


    Format / Umfang :

    1649611 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Driver cognitive distraction recognition

    Zhang, Min / Gai, Jiaoyun / Zhang, Jinglei et al. | British Library Conference Proceedings | 2022


    Driver cognitive distraction recognition

    Zhang, Min / Gai, Jiaoyun / Zhang, Jinglei et al. | SPIE | 2022


    Driver Distraction Assessment Using Driver Modeling

    Hermannstadter, Peter / Yang, Bin | IEEE | 2013