This paper presents a object detection method based on local kernels. The local kernels are arranged to all positions on recognition target and are selected automatically by using Kullback-Leibler divergence according to the recognition target. The proposed method is applied to pedestrian detection problem. The performance of the proposed method is evaluated by the experiment using MIT CBCL pedestrian database. It is confirmed that generalization ability of the proposed method is improved by selecting the local kernels automatically.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Object detection method based on local kernels and automatic kernel selection by Kullback-Leibler divergence


    Beteiligte:
    Hotta, K. (Autor:in)


    Erscheinungsdatum :

    01.01.2002


    Format / Umfang :

    392882 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Object Detection Method Based on Local Kernels and Automatic Kernel Selection by Kullback-Leibler Divergence

    Hotta, K. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2002


    PCA and Kullback-Leibler Divergence-Based FDD Methods

    Chen, Hongtian / Jiang, Bin / Lu, Ningyun et al. | Springer Verlag | 2020


    Ellipticity and Circularity Measuring via Kullback–Leibler Divergence

    Misztal, K. | British Library Online Contents | 2016


    GPS-Spoofing Attack Detection Technology for UAVs Based on Kullback–Leibler Divergence

    Elena Basan / Alexandr Basan / Alexey Nekrasov et al. | DOAJ | 2021

    Freier Zugriff