In this paper, a direct connection between the covariance debiasing methodology for the distributed Kalman (DKF) filter in [1] and the federated Kalman filter is shown. In particular, it can be seen that for a unique choice of the information gain hypothesis of the DKF, the covariance debiasing becomes equivalent to the federated Kalman filter. As the complexity of the covariance calculation for the federated Kalman filter is rather low, a hybrid solution is proposed. A numerical evaluation presents two different scenarios where the state estimate of the distributed Kalman filter outperforms the federated Kalman filter in terms of accuracy. The first scenario is using linear Gaussian noise on position measurements whereas in the second scenario a distributed radar application is shown.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    On how the distributed Kalman filter is related to the federated Kalman filter


    Beteiligte:


    Erscheinungsdatum :

    01.03.2014


    Format / Umfang :

    790555 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Federated Kalman Filter Simulation Results

    Carlson, N. A. / Berarducci, M. P. | British Library Online Contents | 1994


    FEDERATED KALMAN FILTER SIMULATION RESULTS

    Carlson, Neal A. | Online Contents | 1994


    Kalman Filter

    Setoodeh, Peyman / Habibi, Saeid / Haykin, Simon | Wiley | 2022


    Kalman Filter

    Jaulin, Luc | Wiley | 2019