The power grid is a fundamental infrastucture for an urban system, but is usually challenged by frequent power faults. In this study, we adopted the power grid big data and a localized statistical approach, namely geographically weighted regression (GWR) to examine the spatially heterogeneous relationships between power fault (PF) and its influencing variables with the population and point of interest (POI) data. To differentiate the temporal effects, we conducted the GWR models with the monthly PF data. Results show that the PF could be affected with both spatially and temporally heterogeneous characteristics.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Power big data mining with local technique: a survey on power faults


    Beteiligte:
    Lu, Youfei (Autor:in) / Feng, Guoping (Autor:in) / Yao, Hongyu (Autor:in) / Wang, Xuhui (Autor:in) / Lu, Binbin (Autor:in)


    Erscheinungsdatum :

    12.10.2022


    Format / Umfang :

    1373896 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Power Quality Data Mining Using Hybrid Feature Extraction Technique

    Sivaramakrishnan, Vidhya / Mahadevan, Balaji / Vijayarajan, Kamaraj | Springer Verlag | 2023



    Expert System Detects Power-Distribution Faults

    Walters, Jerry L. / Quinn, Todd M. | NTRS | 1994



    Device for detecting faults of electric power automation equipment

    ZHOU CHANGSHENG / HU WENJING / ZHAO JIAMIAO | Europäisches Patentamt | 2023

    Freier Zugriff