This paper is devoted to the problem of multitarget tracking with nonlinear models and uncertain noise statistics in the framework of random finite sets. Based on the linear approximation strategy, a robust closed-form solution to the probability hypothesis density recursion is proposed in terms of an H∞ norm minimization criterion. This idea is extended to develop another analytic implementation using the unscented transform technique. Simulations using the proposed approach are also presented.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Nonlinear Gaussian mixture phd filter with an H∞ criterion


    Beteiligte:
    Li, Wenling (Autor:in) / Jia, Yingmin (Autor:in)


    Erscheinungsdatum :

    01.08.2016


    Format / Umfang :

    812671 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Gaussian Mixture Approximation by Another Gaussian Mixture for `Blob' Filter Re-Sampling

    Psiaki, M. / Schoenberg, J. / Miller, I. et al. | British Library Conference Proceedings | 2010


    Gaussian Mixture Approximation by Another Gaussian Mixture for "Blob" Filter Re-Sampling

    Psiaki, Mark / Schoenberg, Jonathan / Miller, Isaac | AIAA | 2010


    Nonlinear Gaussian Mixture Filtering with Intrinsic Fault Resistance

    Fritsch, Gunner S. / DeMars, Kyle J. | AIAA | 2021



    A Gaussian Mixture Extended-Target Multi-Bernoulli Filter

    Zhang, G. / Lian, F. / Han, C. et al. | British Library Online Contents | 2014