This paper presents a dedicated approach to detect loop closures using visually salient patches. We introduce a novel, energy maximization based saliency detection technique which has been used for unsupervised landmark extraction. We explain how to learn the extracted landmarks on-the-fly and re-identify them. Furthermore, we describe the sparse location representation we use to recognize previously seen locations in order to perform reliable loop closure detection. The performance of our method has been analyzed both on an indoor and an outdoor dataset, and it has been shown that our approach achieves quite promising results on both datasets.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An image-to-image loop-closure detection method based on unsupervised landmark extraction


    Beteiligte:


    Erscheinungsdatum :

    01.06.2012


    Format / Umfang :

    1342173 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    An Image-To-Image Loop-Closure Detection Method Based on Unsupervised Landmark Extraction

    Sariyanidi, E. / Sencan, O. / Temeltas, H. et al. | British Library Conference Proceedings | 2012


    Global image signature for visual loop-closure detection

    Negre Carrasco, P. L. | British Library Online Contents | 2016


    Unsupervised Method of Infrared Spacecraft Image Foreground Extraction

    Shi, Jian-Feng / Ulrich, Steve / Ruel, Stéphane | AIAA | 2019


    Method of correcting INAS error based on landmark-image messages

    Dazhi, C. / Guangjun, Z. | British Library Online Contents | 2003


    Visual synonyms for landmark image retrieval

    Gavves, E. / Snoek, C. G. / Smeulders, A. W. | British Library Online Contents | 2012