The development of assessment methods for the performance of Automated Vehicles (AVs) is essential to enable the deployment of automated driving technologies, due to the complex operational domain of AVs. One candidate is scenario-based assessment, in which test cases are derived from real-world road traffic scenarios obtained from driving data. Because of the high variety of the possible scenarios, using only observed scenarios for the assessment is not sufficient. Therefore, methods for generating additional scenarios are necessary. Our contribution is twofold. First, we propose a method to determine the parameters that describe the scenarios to a sufficient degree while relying less on strong assumptions on the parameters that characterize the scenarios. By estimating the probability density function (pdf) of these parameters, realistic parameter values can be generated. Second, we present the Scenario Representativeness (SR) metric based on the Wasserstein distance, which quantifies to what extent the scenarios with the generated parameter values are representative of real-world scenarios while covering the actual variety found in the real-world scenarios. A comparison of our proposed method with methods relying on assumptions of the scenario parameterization and pdf estimation shows that the proposed method can automatically determine the optimal scenario parameterization and pdf estimation. Furthermore, it is demonstrated that our SR metric can be used to choose the (number of) parameters that best describe a scenario. The presented method is promising, because the parameterization and pdf estimation can directly be applied to already available importance sampling strategies for accelerating the evaluation of AVs.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Scenario Parameter Generation Method and Scenario Representativeness Metric for Scenario-Based Assessment of Automated Vehicles


    Beteiligte:
    de Gelder, Erwin (Autor:in) / Hof, Jasper (Autor:in) / Cator, Eric (Autor:in) / Paardekooper, Jan-Pieter (Autor:in) / Camp, Olaf Op den (Autor:in) / Ploeg, Jeroen (Autor:in) / de Schutter, Bart (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.10.2022


    Format / Umfang :

    3347550 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Automated scenario generation

    Koziarz, W.A. / Krause, L.S. / Lehman, L.A. | Tema Archiv | 2003


    Scenario-Based Safety Assessment Framework for Automated Vehicles

    Ploeg, J. / de Gelder, E. / Slavík, M. et al. | ArXiv | 2021

    Freier Zugriff

    SCENARIO GENERATION DEVICE AND SCENARIO GENERATION METHOD

    ISHIKAWA YUJI / TAMURA MASAKAZU | Europäisches Patentamt | 2023

    Freier Zugriff

    SCENARIO GENERATION DEVICE AND SCENARIO GENERATION METHOD

    ISHIKAWA YUJI / TAMURA MASAKAZU | Europäisches Patentamt | 2023

    Freier Zugriff

    Automated scenario generation for regression testing of autonomous vehicles

    Rocklage, Elias / Kraft, Heiko / Karatas, Abdullah et al. | IEEE | 2017