In this paper, we investigate the channel estimation for massive multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. We revisit the information geometry approach (IGA) for massive MIMO-OFDM channel estimation. By using the constant magnitude property of the entries of the measurement matrix and the asymptotic analysis, we find that the second-order natural parameters (SONPs) of the distributions on all the auxiliary manifolds (AMs) are equivalent to each other at each iteration of IGA, and the first-order natural parameters (FONPs) of the distributions on all the AMs are asymptotically equivalent to each other at the fixed point. Motivated by these results, we simplify the iterative process of IGA and propose a simplified IGA for massive MIMO-OFDM channel estimation. It is proved that at the fixed point, the a posteriori mean obtained by the simplified IGA is asymptotically optimal. The simplified IGA allows efficient implementation with fast Fourier transformation (FFT). Simulations confirm that the simplified IGA can achieve near the optimal performance with low complexity in a limited number of iterations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Channel Estimation for Massive MIMO-OFDM: Simplified Information Geometry Approach


    Beteiligte:
    Yang, Jiyuan (Autor:in) / Chen, Yan (Autor:in) / Lu, An-An (Autor:in) / Zhong, Wen (Autor:in) / Gao, Xiqi (Autor:in) / You, Xiaohu (Autor:in) / Xia, Xiang-Gen (Autor:in) / Slock, Dirk (Autor:in)


    Erscheinungsdatum :

    10.10.2023


    Format / Umfang :

    1169203 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch