Ensuring safe and efficient navigation in smart campus transportation systems is increasingly crucial with the integration of autonomous vehicles, making accurate and robust lane detection a paramount factor. This research presents a combined traditional computer vision algorithm with advanced deep learning techniques to enhance the precision and dependability of lane detection in diverse campus environments in autonomous campus shuttles. The system utilizes a multi-stage process, incorporating color segmentation, edge detection, and Convolutional Neural Network (CNN) for robust lane feature extraction. A dynamic region of interest adjustment mechanism that adapts to varying campus scenarios ensuring adaptability to lighting conditions and road layouts, was introduced. Experimental results using a miniature scaled-down autonomous campus shuttle demonstrated significant improvements in lane detection accuracy compared to conventional methods, validating the effectiveness of our enhanced approach. The proposed system enhances the safety and reliability of autonomous campus shuttles and contributes to the broader field of computer vision applications for intelligent transportation systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Enhanced Lane Detection for Autonomous Campus Shuttles Using Hybrid Computer Vision Techniques




    Erscheinungsdatum :

    02.04.2024


    Format / Umfang :

    3963482 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Lane Detection Using Computer Vision Techniques in ADAS Systems

    Mahmoud, Youssef A. / Badran, Abdelrahman B. / Mohamed, Mohamed K. et al. | IEEE | 2024


    Autonomous Vehicle based on Lane Detection through Computer Vision using Raspberry Pi

    Khalid, Adnan / Tahir, Tayyab / Haider, Aun et al. | IEEE | 2022




    Enhancing Autonomous Vehicle Navigation Through Computer Vision: Techniques for Lane Marker Detection and Rain Removal

    Nagavarapu, Sarat Chandra / Abraham, Anuj / Li, Sihao et al. | Springer Verlag | 2025